31 research outputs found

    The potential role of DNA methylation as preventive treatment target of epileptogenesis

    Get PDF
    Pharmacological therapy of epilepsy has so far been limited to symptomatic treatment aimed at neuronal targets, with the result of an unchanged high proportion of patients lacking seizure control. The dissection of the intricate pathological mechanisms that transform normal brain matter to a focus for epileptic seizuresā€”the process of epileptogenesisā€”could yield targets for novel treatment strategies preventing the development or progression of epilepsy. While many pathological features of epileptogenesis have been identified, obvious shortcomings in drug development are now believed to be based on the lack of knowledge of molecular upstream mechanisms, such as DNA methylation (DNAm), and as well as a failure to recognize glial cell involvement in epileptogenesis. This article highlights the potential role of DNAm and related gene expression (GE) as a treatment target in epileptogenesis

    The organization of functional neurocognitive networks in focal epilepsy correlates with domain-specific cognitive performance

    Get PDF
    Understanding and diagnosing cognitive impairment in epilepsy remains a prominent challenge. New etiological models suggest that cognitive difficulties might not be directly linked to seizure activity, but are rather a manifestation of a broader brain pathology. Consequently, treating seizures is not sufficient to alleviate cognitive symptoms, highlighting the need for novel diagnostic tools. Here, we investigated whether the organization of three intrinsic, resting-state functional connectivity networks was correlated with domain-specific cognitive test performance. Using individualized EEG source reconstruction and graph theory, we examined the association between network small worldness and cognitive test performance in 23 patients with focal epilepsy and 17 healthy controls, who underwent a series of standardized pencil-and-paper and digital cognitive tests. We observed that the specific networks robustly correlated with test performance in distinct cognitive domains. Specifically, correlations were evident between the default mode network and memory in patients, the central-executive network and executive functioning in controls, and the salience network and social cognition in both groups. Interestingly, the correlations were evident in both groups, but in different domains, suggesting an alteration in these functional neurocognitive networks in focal epilepsy. The present findings highlight the potential clinical relevance of functional brain network dysfunction in cognitive impairment.Peer reviewe

    Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study

    Get PDF
    Partial epilepsies have a substantial heritability. However, the actual genetic causes are largely unknown. In contrast to many other common diseases for which genetic association-studies have successfully revealed common variants associated with disease risk, the role of common variation in partial epilepsies has not yet been explored in a well-powered study. We undertook a genome-wide association-study to identify common variants which influence risk for epilepsy shared amongst partial epilepsy syndromes, in 3445 patients and 6935 controls of European ancestry. We did not identify any genome-wide significant association. A few single nucleotide polymorphisms may warrant further investigation. We exclude common genetic variants with effect sizes above a modest 1.3 odds ratio for a single variant as contributors to genetic susceptibility shared across the partial epilepsies. We show that, at best, common genetic variation can only have a modest role in predisposition to the partial epilepsies when considered across syndromes in Europeans. The genetic architecture of the partial epilepsies is likely to be very complex, reflecting genotypic and phenotypic heterogeneity. Larger meta-analyses are required to identify variants of smaller effect sizes (odds ratio <1.3) or syndrome-specific variants. Further, our results suggest research efforts should also be directed towards identifying the multiple rare variants likely to account for at least part of the heritability of the partial epilepsies. Data emerging from genome-wide association-studies will be valuable during the next serious challenge of interpreting all the genetic variation emerging from whole-genome sequencing studie

    Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study

    Get PDF
    Partial epilepsies have a substantial heritability. However, the actual genetic causes are largely unknown. In contrast to many other common diseases for which genetic association-studies have successfully revealed common variants associated with disease risk, the role of common variation in partial epilepsies has not yet been explored in a well-powered study. We undertook a genome-wide association-study to identify common variants which influence risk for epilepsy shared amongst partial epilepsy syndromes, in 3445 patients and 6935 controls of European ancestry. We did not identify any genome-wide significant association. A few single nucleotide polymorphisms may warrant further investigation. We exclude common genetic variants with effect sizes above a modest 1.3 odds ratio for a single variant as contributors to genetic susceptibility shared across the partial epilepsies. We show that, at best, common genetic variation can only have a modest role in predisposition to the partial epilepsies when considered across syndromes in Europeans. The genetic architecture of the partial epilepsies is likely to be very complex, reflecting genotypic and phenotypic heterogeneity. Larger meta-analyses are required to identify variants of smaller effect sizes (odds ratio <1.3) or syndrome-specific variants. Further, our results suggest research efforts should also be directed towards identifying the multiple rare variants likely to account for at least part of the heritability of the partial epilepsies. Data emerging from genome-wide association-studies will be valuable during the next serious challenge of interpreting all the genetic variation emerging from whole-genome sequencing studies

    Identification of Srp9 as a febrile seizure susceptibility gene

    Get PDF
    Objective: Febrile seizures (FS) are the most common seizure type in young children. Complex FS are a risk factor for mesial temporal lobe epilepsy (mTLE). To identify new FS susceptibility genes we used a forward genetic strategy in mice and subsequently analyzed candidate genes in humans. Methods: We mapped a quantitative trait locus (QTL1) for hyperthermia-induced FS on mouse chromosome 1, containing the signal recognition particle 9 (Srp9) gene. Effects of differential Srp9 expression were assessed in vivo and in vitro. Hippocampal SRP9 expression and genetic association were analyzed in FS and mTLE patients. Results: Srp9 was differentially expressed between parental strains C57BL/6J and A/J. Chromosome substitution strain 1 (CSS1) mice exhibited lower FS susceptibility and Srp9 expression than C57BL/6J mice. In vivo knockdown of brain Srp9 reduced FS susceptibility. Mice with reduced Srp9 expression and FS susceptibility, exhibited reduced hippocampal AMPA and NMDA currents. Downregulation of neuronal Srp9 reduced surface expression of AMPA receptor subunit GluA1. mTLE patients with antecedent FS had higher SRP9 expression than patients without. SRP9 promoter SNP rs12403575(G/A) was genetically associated with FS and mTLE. Interpretation: Our findings identify SRP9 as a novel FS susceptibility gene and indicate that SRP9 conveys its effects through endoplasmic reticulum (ER)-dependent synthesis and trafficking of membrane proteins, such as glutamate receptors. Discovery of this new FS gene and mechanism may provide new leads for early diagnosis and treatment of children with complex FS at risk for mTLE

    Influence of Specific Hammerhead Ribozymes on the Expression of HLA-DRB molecules

    Get PDF
    This dissertation is based on plasmid transfection methods in cell cultures and tests and develops methods for prevention of graft rejection in Transplantation Medicine. Plasmid transfection was used to investigate in how far specific Hammerhead-Ribozymes (cleavage RNA) reduce the expression and HLA-DRB molecules, which play an important role in graft rejection. Using cell cultures, plasmid transfection, e.coli transformation, flow cytometry, and DNA sequencing methods, a reduction of HLA-DRB was achieved

    Astrocytic Ca2+ Signaling in Epilepsy

    Get PDF
    Epilepsy is one of the most common neurological disorders ā€“ estimated to affect at least 65 million worldwide. Most of the epilepsy research has so far focused on how to dampen neuronal discharges and to explain how changes in intrinsic neuronal activity or network function cause seizures. As a result, pharmacological therapy has largely been limited to symptomatic treatment targeted at neurons. Given the expanding spectrum of functions ascribed to the non-neuronal constituents of the brain, in both physiological brain function and in brain disorders, it is natural to closely consider the roles of astrocytes in epilepsy. It is now widely accepted that astrocytes are key controllers of the composition of the extracellular fluids, and may directly interact with neurons by releasing gliotransmitters. A central tenet is that astrocytic intracellular Ca 2+ signals promote release of such signaling substances, either through synaptic or non-synaptic mechanisms. Accruing evidence suggests that astrocytic Ca 2+ signals play important roles in both seizures and epilepsy, and this review aims to highlight the current knowledge of the roles of this central astrocytic signaling mechanism in ictogenesis and epileptogenesis

    The potential role of DNA methylation as preventive treatment target of epileptogenesis

    No full text
    Pharmacological therapy of epilepsy has so far been limited to symptomatic treatment aimed at neuronal targets, with the result of an unchanged high proportion of patients lacking seizure control. The dissection of the intricate pathological mechanisms that transform normal brain matter to a focus for epileptic seizuresā€”the process of epileptogenesisā€”could yield targets for novel treatment strategies preventing the development or progression of epilepsy. While many pathological features of epileptogenesis have been identified, obvious shortcomings in drug development are now believed to be based on the lack of knowledge of molecular upstream mechanisms, such as DNA methylation (DNAm), and as well as a failure to recognize glial cell involvement in epileptogenesis. This article highlights the potential role of DNAm and related gene expression (GE) as a treatment target in epileptogenesis

    Is Temporal Lobe Epilepsy with childhood febrile seizures a distinctive entity? A comparative study

    Get PDF
    AbstractObjectivePharmacoresistance continues to be a major challenge in Temporal Lobe Epilepsies (TLE). A key to overcome pharmacoresistance is to identify subgroups among the TLE and disclose their specific molecular pathways. This will facilitate a tailored pharmacological treatment and improve outcome. There is growing evidence in favor of the theory that TLE with childhood febrile seizures (TLE-FS) may represent one distinctive subgroup among the TLE.Material and methodsWe compared clinical features from 102 TLE-FS patients with 105 TLE patients without FS. We also conducted a logistic regression analysis to adjust for possible confounders caused by overrepresentation of patients with Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis (MTLE-HS) in the TLE-FS group.ResultsMTLE-HS was overrepresented in patients with TLE-FS (p=0.043). Age at epilepsy onset was lower in patients with TLE-FS (p<0.001). TLE-FS patients had a higher frequency of first grade family members with FS (p=0.003, adjusted for MTLE-HS: p=0.002). They were more frequently plagued with simple partial seizures (p=0.015, adjusted: p=0.038), and especially with vertiginous symptoms (p=0.004 adjusted: p=0.006). They also had the higher frequency of autonomic symptoms (p=0.003; adjusted: p=0.012), and more generalized tonicā€“clonic seizures (0.034; adjusted p=0.038).ConclusionWe identified TLE-FS as a phenotype that can be delineated from other TLE. None of the characteristics are specific, but we disclosed a set of features also when adjusted for MTLE-HS
    corecore